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Abstract. Chemical reaction networks are a popular formalism for mod-
eling biological processes which supports both a deterministic and a
stochastic interpretation based on ordinary differential equations and
continuous-time Markov chains, respectively. In most cases, these mod-
els do not enjoy analytical solution, thus typically requiring expensive
computational methods based on numerical solvers or stochastic sim-
ulations. Exact model reduction techniques can be used as an aid to
lower the analysis cost by providing reduced networks that preserve the
dynamics of interest to the modeler. We hereby consider a family of tech-
niques for both deterministic and stochastic networks which are based
on equivalence relations over the species in the network, leading to a
coarse graining which provides the exact aggregate time-course evolu-
tion for each equivalence class. We present a large-scale empirical as-
sessment on the BioModels repository by measuring their compression
capability over 667 models. Through a number of selected case studies,
we also show their ability in yielding physically interpretable reductions
that can reveal dynamical patterns of the bio-molecular processes under
consideration.

Keywords: Model reduction · Biological systems · Equivalence relations

1 Introduction

Computational models in systems biology combine biochemical and physiological
knowledge to inform highly detailed mechanistic models of biological networks
such as signaling pathways, protein-protein interaction networks, and genetic
cascades. Mathematical models which equip such interaction networks with ki-
netic information generally lead to a dynamical-system representation in terms of
a formal chemical reaction network (CRN), with two main interpretations based
on ordinary differential equations (ODEs) and continuous-time Markov chains
(CTMCs), respectively. In either case the model tracks the time-course evolution
of all biochemical species in the network. In the ODE interpretation each species
is associated with a variable of a system of (typically nonlinear) ODEs, which
are analyzed from an initial condition that represents the initial concentration of
each species [51]. In the CTMC interpretation [27], species are tracked discretely
and each state is a vector of molecular counts, one component for each species.
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It is well known that these two representations can be formally related to each
other under appropriate conditions, with the ODEs being the thermodynamical
limit when the number of molecules in the CRN is large enough [33].

Often it is useful to consider both interpretations—one would take the CTMC
semantics as the ground-truth representation and the ODE as an approximation
that estimates the first-order moments. Unfortunately, in both cases the analysis
can be expensive due to the lack of analytical solutions in general. Indeed, the
modeler is typically left with computational approaches such as the numerical
integration of ODEs (e.g., [1]) or stochastic simulation [27]. This is a major moti-
vating issue for several lines of research aiming at easing the computational cost
of the analysis, including efficient simulation methods (e.g., [26]), approximation
methods for stochastic chemical kinetics (e.g., [44]), and simplification techniques
for multi-scale biochemical CRNs (e.g., [43]) and rule-based models [24,23,25].

A complementary approach that can be seen as a generic pre-analysis step
consists in the use of an exact model reduction algorithm which, given an input
CRN, produces a smaller CRN (i.e., consisting of fewer species and reactions)
that preserves the output dynamics of interest to the modeler (e.g., [38,49]).
This would lead to a coarse-grained CRN which still allows the full observation
of the time evolution of some original species (e.g., the phosphorylated forms of
downstream molecular complexes in a signaling pathway) while collapsing the be-
havior of other species into macro-variables. Such an approach may bring about
two main advantages. First, being a CRN-to-CRN transformation, the coarse-
grained CRN can still be subjected to other techniques to reduce the complexity
of the analysis, including approximate model reduction methods. Second, the
very collapse of several species into one may carry a physical interpretation that
increases our understanding of the biology. The latter point appears to be of sci-
entific relevance regardless of the CRN reduction ratio. Therefore, two suitable
indicators of the relevance of exact model reduction techniques in practice are
the effectiveness and the intelligibility of the reductions.

This paper presents a large-scale assessment on biological models in the lit-
erature for recent reduction techniques for CRNs, supporting the ODE and the
CTMC semantics [8,7,10,11,13]. The techniques share two main unifying ideas:

i) Identifying criteria on the species and reactions of a CRN inducing a suit-
able species equivalence, i.e., a partition of the species such that an exactly
reduced CRN can be written having a macro-species per partition block.

ii) Developing an algorithm for computing the largest species equivalence using
partition refinement [41], based on iterative refinements of a given initial
partition of species (with which, for instance, one can isolate the observable
species to be preserved in the reduction).

The definitions of the species equivalences differ according to the underlying se-
mantics to which they are applicable, the assumptions made on the input CRN,
and the kind of reduction that they yield. Specifically, forward equivalence (FE)
and backward equivalence (BE) apply to CRNs with ODE semantics based on
mass-action kinetics and identify reduced models where each macro-species pre-
serves the sums of original variables belonging to a block [10]; while with FE the
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time-course of one species cannot be recovered, BE aggregates species that have
the same solutions at all time points. Forward differential equivalence (FDE)
and backward differential equivalence (BDE) are generalizations that can be
applied to CRNs where the underlying ODEs have nonlinearities beyond poly-
nomials such as rational expressions in Hill kinetics [7]. Finally syntactic Marko-
vian bisimulation (SMB) is the species equivalence for stochastic CRNs [11]. It
identifies a partition of species which induces a coarse graining of the underlying
CTMC in terms of ordinary lumpability [5], aggregating CTMC states that have
equal sums of molecular counts across each partition block of species.

Assisted by ERODE [9], a publicly available software tool that implements the
aforementioned species equivalences, we carry out an assessment of the BioMod-
els database [37], a well-known repository of quantitative models of biochemical
systems.3 Our goal is to answer the following three evaluation questions:

Q1. How restrictive are the assumptions required by the species equivalences?
We answer this question by detailing how we translated the BioModels de-
scriptions, available in the SBML format, into the input format of ERODE.

Q2. What is the effectiveness of exact model reduction by species equivalence?
We measure effectiveness as the percentage of models that can be aggre-
gated, as well as the compression ratio provided by the largest species
equivalence that preserves the observables specified in the original model.

Q3. What is the physical interpretation of the reductions? For this question, we
present a more detailed discussion of a selected number of models.

2 Background

In order to make the paper self-contained, in this section we briefly overview
the main results regarding the species equivalences used in our assessment. We
refer to the original papers for the details and further examples, while unifying
tutorial-like presentations are given in [48,50].

Chemical reaction networks. First, we fix the notation and terminology for re-
action networks. A CRN is a pair (S,R) consisting of a finite set of species S
and a finite set of reactions R, where each reaction is in the form ρ

f−→ π con-
sisting of: a multiset of species ρ, with the multiplicity of species S denoted by
ρS , that represents the reactants; a multiset of species π (the products); and the
propensity function f : RS → R≥0. Roughly speaking, it gives the rate at which
the reaction fires based on the current system state; the net stoichiometry π− ρ
gives the state update upon the reaction firing.4

Example 1. Let us use a CRN (SE ,RE) with species S1, S2, S3, S4, S5, and reac-

tions S1
2−−→S5, S1

1−−→2S3, S3+S5
3−−→S3, S2

2−−→S3, S2
1−−→2S5, S4+S5

3−−→S3.

3 The models are available at https://sysma.imtlucca.it/tools/erode/cmsb2019/
4 As usual, the + and - operators denote multiset union and difference, respectively,

while the multiplicity of a species denotes its stoichiometric coefficient.

https://sysma.imtlucca.it/tools/erode/cmsb2019/
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According to the deterministic semantics of CRNs [51], a CRN is associated
with an ODE system which tracks the time course of the vector of concentrations
of the species at time t, X(t) = (XS(t))S∈S , as follows:

dXS(t)

dt
=

∑
(ρ

f−→π)∈R

(πS − ρS) · f(X(t)).

In a deterministic mass-action CRN, each reaction is associated with a kinetic
parameter λ > 0, and the propensity function, denoted by fλ, is given by fλ(x) =
λ ·
∏
S∈S x

ρS
S , where ρ is the multiset of reactants. The CRN (SE ,RE) is a mass-

action CRN. For example, the ODEs for S1 and S2 are:

dX1(t)

dt
= −3 ·X1(t))

dX2(t)

dt
= −3 ·X2(t)

According to the stochastic semantics of CRNs [27], a CRN is represented as a
Markov population process, a CTMC where each state is a vector n = (nS)S∈S
of nonnegative integers that tracks the molecular counts of each species. The
initial state is a vector representing the initial (integer) populations of each
species. A transition between any two states n and n+π−ρ occurs according to

an exponential distribution with parameter f(n) for each reaction ρ
f−→ π. The

CTMC underlying a CRN for an initial state consists of all states and transitions
generated by applying exhaustively the reactions on all generated states, starting
from the initial one. An elementary mass-action CRN has reactions in the form

ρ
fλ−→ π where |ρ| ≤ 2 (i.e., at most two molecules can interact), λ > 0 is the

kinetic parameter, and fλ(n) = λ ·
∏
S∈S

(
nS
ρS

)
, where n is the source state. The

CRN in Example 1 is elementary.

Forward and backward equivalence (FE and BE). FE and BE are two reduction
techniques for deterministic mass-action CRNs given as equivalence relations on
species which can be efficiently checked by using only structural conditions on
the reactions [10]. For χ ∈ {FE,BE}, both notions can be expressed as:

Given a CRN (S,R), a partition H of species is χ if and only if for any
two blocks H,H ′ ∈ H and any two species Si, Sj ∈ H it holds

cχ(Si, η,H
′)=cχ(Sj , η,H

′) ∀η. ∃(Sk+η
λ−−→π)∈R for Sk ∈ {Si, Sj}

where cχ maps a species (Si,Sj), a multiset of reagent partners (η) and a block
(H ′) into a real number computed by inspecting once the reactions [10].

Fig. 1 shows FE partition Hf and BE partition Hb, as well as their respective
reduced CRNs, for the running example (We observe that Hb is a refinement of
Hf , but in general, FE and BE are not comparable [8,6]). FE relates species
such that it is possible to rewrite the ODEs underlying the CRN in terms of
sums of the variables in each block. Each macro-species in the FE-reduced CRN
represents the sum of the corresponding species in the original CRN. For exam-
ple, in Fig. 1(a) species S1,2 and S3,4 can be used to study the concentration of
the sums of original variables S1 + S2 and S3 + S4, respectively.
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Hf ={{S1, S2}, {S3, S4}, {S5}}
Sf ={S1,2, S3,4, S5}

Rf ={S1,2
1−−→S5, S1,2

0.5−−→2S3,4, S3,4+S5
3−−→S3,4,

S1,2
1−−→S3,4, S1,2

0.5−−→2S5}
(a) FE-reduction

Hb ={{S1, S2}, {S3}, {S4}, {S5}}
Sb ={S1,2, S3, S4, S5}

Rb ={S1,2
1−−→S5, S1,2

0.5−−→2S3, S3+S5
3−−→S3,

S1,2
1−−→S3, S1,2

0.5−−→2S5, S4+S5
3−−→S3}

(b) BE-reduction

Fig. 1: Coarsest FE/BE, and FE/BE-reductions of (SE ,RE) from Example 1.

BE relates species that have same ODE solution at any point in time (which
therefore must have same initial condition). In the BE-reduced CRN in Fig. 1(b),
S1,2 represents the sum of original species S1 + S2. However, BE ensures that
S1 and S2 have same ODE solution at all times. Therefore, we can recover each
individual solution of by halving that of S1,2.

Forward and backward differential equivalence (FDE and BDE). FDE and BDE
are generalizations of FE and BE, respectively, for deterministic CRNs beyond
mass-action [7,13]. FDE and BDE capture the same dynamical properties of
FE and BE, and collapse to them for mass-action deterministic CRNs. The
greater generality of FDE/BDE comes at the cost of a more computationally
expensive implementation based on encodings in satisfiability modulo theory
(SMT) formulas. For instance, the following formula ψHb encodes the check
whether partition Hb is a BDE:

ψHb := (X1 = X2) =⇒ (−3 ·X1 = −3 ·X2)

which checks that if all variables in same block are equal (the premise) then
they must evolve in the same way, i.e. their derivative should evaluate to the
same value (the conclusion). The formula has two free real variables, X1 and
X2, corresponding to S1 and S2. By using an SMT solver, e.g., Z3 [19], we can
check if Hb is a BDE by checking for the satisfiability of ¬ψHb . If there exists an
assignment for X1 and X2 that makes ¬ψHb true, then Hb is not a BDE. This
is not the case, and hence it is a BDE (as expected from it being a BE).

Syntactic Markovian bisimulation (SMB). SMB is a reduction technique for
stochastic mass-action elementary CRNs [11]. It is given as an equivalence on
species, in the same spirit of FE and BE. Indeed, SMB can be seen as an in-
stantiation of FE to the stochastic semantics of CRNs. We discuss this through
our running example. The partition Hs = {{S1}, {S2}, {S3, S4}, {S5}} is an
SMB for the CRN (SE ,RE) from Example 1. The very same notion of FE/BE-
reduced CRN applies to SMB as well. The Hs-reduction of (SE ,RE) has species

SS ={S1, S2, S3,4, S5} and reactions RS ={S1
2−−→S5, S1

1−−→2S3,4, S3,4+S5
3−−→

S3,4, S2
2−−→ S3,4, S2

1−−→ 2S5}. A state of a CTMC of (SE ,RE) is a vector of
size |SE | counting the population of each original species, while a state of a
CTMC of (SS ,RS) is a vector of size |SS | counting the cumulative population
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of each block of Hs. The CTMCs of (SS ,RS) are reductions in terms of CTMC
ordinary lumpability [5] of the ones obtained from (SE ,RE). All states of the
original CTMC containing same number of Hs-equivalent species get collapsed
in the same macro-state in the reduced CTMC. Therefore, similarly to FE, SMB
allows to obtain a coarse-grained version of the original CRN which allows to rea-
son in terms of sums of variables. For example, the states S1 +2S3, S1 +S3 +S4,
and S1 + 2S4 form an ordinary lumpable partition of a CTMC of the original
CRN, and therefore get collapsed in the state S1 + 2S3,4 for the reduced CRN.

We note that Hs is a refinement of Hf . Indeed, it has been shown that SMB
implies FE, but not vice versa [11]. This will be confirmed in Section 3.4.

Partition refinement. Each equivalence is supported by a partition refinement
algorithm which refines an initial partition of species (splitting its blocks) until a
fixed point. The initial partition can be chosen, e.g., to isolate species that must
not be aggregated because they are observables of interest to the modeler. The
examples shown in this section are largest refinement of the singleton partition
where all species are in a block. Other initial partitions will be used in Section 3.

3 Experimental set-up

3.1 Overview of the BioModels repository

The BioModels Database is a repository of computational models of biological
processes [37]. It hosts dynamical quantitative models described in peer-reviewed
scientific literature as well as models generated automatically from pathway re-
sources such as KEGG [32], BioCarta [40], MetaCyc [14], PID [42] and SABIO-
RK [52]. BioModels covers a wide range of models from several biological cate-
gories such as biochemical reaction systems, kinetic models, metabolic networks,
steady-state models and signaling pathways. Models are available in the Systems
Biology Markup Language (SBML) [30], a well-known machine-readable format
based on XML for representing quantitative models of biological systems.

The BioModels repository is divided into two sections: the curated branch and
the non-curated branch. The former contains models that have been manually
checked and their components annotated using unambiguous identifiers [31] that
refer to external biological databases [22,46,17] or ontologies (such as Gene On-
tology [2], SBO [18] or ChEBI [20]). Models are curated following the Minimum
Information Required in the Annotation of Models guidelines (MIRIAM) [35].
Models that are not MIRIAM-compliant are stored in the non-curated branch,
which also contains non-kinetic models such as flux balance analysis models. A
more detailed description of BioModels is available at [16].

3.2 Model conversion

We developed a prototype for translating SBML models into ERODE’s format,
using the workflow in Fig. 2. SBML files are read using the jsbml library (version
1.2) [36,21]. Here we briefly explain the main phases of the conversion process.
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SBML

.ode model

Parameters
Species
Reactions

reduced .ode

Parameters
Species
Reactions

ERODEBioModels 
Database

Converter

Fig. 2: Workflow overview. Models were downloaded from the BioModels reposi-
tory in the SBML format. We implemented a tool to translate the SBML descrip-
tion into the CRN-like input (.ode format) of ERODE. The output of ERODE
is a reduced CRN with reactions involving macro-species, each representing the
sum within an equivalence class of original species. We manually inspected the
ERODE output to provide a physical interpretation of the obtained equivalences.

The CRN input format of ERODE contains lists of parameters (to be used in
kinetic rates), of species (with corresponding initial conditions), and of reactions.
This is followed by a list of commands for analysis, reduction, and export.

The following SBML snippet, from BIOMD0000000030, specifies a parameter

<parameter id="k1" metaid="metaid_0000019" name="k1" value="0.02"/>

This is translated into k1 = 0.02 within the parameters list (delimited by begin

parameters/end parameters) of the ERODE description.
The next SBML snippet, adapted from the same model by removing the

annotation tag containing links to external databases, defines the species M:

<species compartment="cell" id="M" initialConcentration="800"
metaid="metaid_0000005" name="MAPK"/>

It describes the compartment in which the species is located, the initial concen-
tration and an identifier. We translate this into M = 800 within ERODE’s species
declaration section (delimited by begin init/end init).

Instead, the conversion of the reactions is less straightforward, particularly to
recognize mass-action models to which the specialized FE, BE, and SMB can be
applied. Indeed, SBML allows the direct specification of mass-action reactions
by means of appropriate SBO labels in the kineticLaw tag (other labels identify
different kinetics such as Michaelis-Menten and Hill). However, we encountered
cases of reactions that, although not tagged with mass-action labels, were clearly
so upon inspection of the reactions. One such example is given in Fig. 3. It shows
the specification of a reaction containing a list of reactants, products (as well as
modifiers, not used in this reaction, to model, e.g., catalysts or intermediates in
the reaction). The reaction has an optional attribute reversible, by default
set to true, indicating if the reaction is reversible. We inferred the forward and
reverse rate functions as the left and right operand, respectively, of the topmost
minus MathML tag (Line 16). This leads to the two following ERODE irreversible
reactions (as ERODE does not support reversible reactions):

M + MAPKK -> M_MAPKK_Y, arbitrary cell * k1 * M * MAPKK

M_MAPKK_Y -> M + MAPKK, arbitrary cell * k_1 * M_MAPKK_Y

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000030
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1 <reaction id="reaction_0000001" metaid="metaid_0000046"
2 name="binding MAPKK on Tyr site of MAPK">
3 <listOfReactants >
4 <speciesReference metaid="_063184" species="M"/>
5 <speciesReference metaid="_063196" species="MAPKK"/>
6 </listOfReactants >
7 <listOfProducts >
8 <speciesReference metaid="_063208" species="M_MAPKK_Y"/>
9 </listOfProducts >

10 <kineticLaw metaid="_063220">
11 <math xmlns="http://www.w3.org /1998/ Math/MathML">
12 <apply>
13 <times/>
14 <ci>cell</ci>
15 <apply>
16 <minus/>
17 <apply>
18 <times/><ci>k1</ci><ci>M</ci><ci>MAPKK</ci>
19 </apply >
20 <apply>
21 <times/><ci>k_1</ci><ci>M_MAPKK_Y </ci>
22 </apply >
23 </apply >
24 </apply >
25 </math>
26 </kineticLaw >
27 </reaction >

Fig. 3: Sample SBML reaction adapted from BIOMD0000000030

Here, the left- and right-hand sides of the reactions are taken from the SMBL
lists (and modifiers are added in both sides if present), whereas the arbitrary

keyword denotes a reaction with a generic non-mass-action propensity func-
tion. However, one can notice that these two reactions are actually equivalent
to mass-action reactions with kinetic parameters cell * k1 and cell * k 1,
respectively. We manually detected such occurrences of non-tagged mass-action
reactions and translated into ERODE mass-action ones. In this example we get:

M + MAPKK -> M_MAPKK_Y, cell * k1

M_MAPKK_Y -> M + MAPKK, cell * k_1

ERODEcan export the ODEs underlying a model as a Matlab function. Like-
wise, in BioModels all models come with an encoding as Matlab functions. We
tested our converter over a large random selection of BioModels files by checking
that their Matlab functions and those exported by ERODE corresponded.

3.3 Repository Preprocessing

In our experiments we used the BioModels repository snapshot 26 July 2017.
It consists of 640 models in the curated branch (from id BIOMD0000000001
to BIOMD0000000640) and 1000 models in the non-curated branch (with ids
ranging from MODEL0072364382 to MODEL9811206584).

We performed a preprocessing step to filter out models that could not be used
for the analysis (cf. evaluation question Q1 in Section 1). In the non-curated

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000030
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branch only 491 models are kinetic models described as ODE systems, while
the others are described in formalisms, such as logical or flux balance analysis
models, that are outside the scope of applicability of species equivalences.

Overall, we could process 448 models from the curated branch and 219 from
the non-curated one, for an overall sanitized dataset of 667 models. Of these, 43
were recognized as mass-action CRNs (as detailed in Section 3.2); all of them
were found to be elementary mass-action CRNs, hence analyzable by SMB. The
most frequent reasons for discarding a model were (within parenthesis we give
the frequency in the curated branch, which we assume to be more stable):

– syntactic limitations in our converter prototype, including the lack of support
for models without explicit reactions where the dynamics is given by rate
rules over a set of parameters, e.g., as in BIOMD0000000020 (114);

– models with unsupported propensity functions such as tanh and exp (31);
– models with species with Assignment Rules, used to model features such as

delayed equations and hybrid systems, not supported by ERODE (47).

3.4 Reduction results

Here we report the summary of the reduction results. Non mass-action models
were analyzed using FDE and BDE, while for mass-action ones we used FE, BE,
and SMB. In a preliminary analysis we considered the maximal equivalences
for all cases, computed by starting the partition-refinement algorithms with the
initial singleton partition with a single block containing all species in the CRN.
However, in 32 cases we found that the maximal FDE/FE collapsed all species
and reactions. This is because these CRNs are closed and mass-preserving, mean-
ing that the concentrations (represented by the ODE solutions for each species)
just flow among the species, but the total cumulative concentration is constant.
Therefore these systems can be self-consistently written as a single-equation
ODE with zero derivative (and initial concentration equal to that total cumula-
tive concentration). We dismissed such partitions as degenerate/uninteresting.
Instead, for these cases we built more meaningful (ad-hoc) initial partitions to
be used in the partition-refinement algorithm: we isolated variables of interest
to the modeler, as evinced from the related scientific publication.

For each equivalence we computed the reduced CRN, recording the resulting
number of species and reactions as a measure of the effectiveness of the exact
reduction techniques (cf. Q2 in Section 1). Figure 4 counts the models that
could be reduced by at least one technique, regardless of the reduction ratio.
For the non mass-action models (Fig. 4a), 233 models (37%) could be reduced.
In particular, only 36 models could be reduced by both FDE and BDE, proving
that they are not comparable. Several models (196, 31%) could not be analyzed
due to the excessive computational cost of FDE, while only 2 due to BDE (we
used a time-out of 8 hours). This is consistent with the more (and more complex)
SMT checks required by FDE with respect to BDE [7].

All the mass-action models (Fig. 4b) could be reduced by at least one equiv-
alence relation. Ten models (23%) could be reduced with BE and 5 (12%) with



10 Isabel Cristina Perez-Verona, Mirco Tribastone, and Andrea Vandin

FDE

BDE

BDE timeout

FDE timeout

Non reduced

BDE/FDE

202

196

68

129

33

2

36

(a) Non mass-action

10

5

5 11

1210

5

5 11

12

FE

BE

BE/FE

BE/FE/SMB

FE/SMB

(b) Mass-action

Fig. 4: Reduction results.
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Fig. 5: Comparison among original and reduced species and reactions (log scale).

FE only. Twelve models (28%) could be reduced with the three methods, while
11 (25%) could be reduced with SMB and FE, and 5 (12%) with FE and BE.
The presence of models that could be reduced only by FE and not SMB shows
that FE does not imply SMB, while the converse is true, as discussed.

Figure 5 shows a scatter plot to summarize the reduction ratio for each model
using the species equivalence that yielded the best reduction. MODEL3632127506,
the largest model processed, denoted with blue circled dots in the figure, was
reduced from 872 species and 1750 reactions to 436 species and 900 reactions,
with a reduction of about 50% in the number of species and reactions. Overall,
the average compression ratio is 36% for the species and 26% for the reactions.

The average reduction ratio in the number of species and reactions varies with
each method: BDE (23% for species, 8% for reactions), FDE (50%, 48%), BE
(19%, 8%), FE (51%, 47%), SMB (35%, 29%). Figure 6 illustrates the reductions
obtained. For each species equivalence, we group the models in 5 histogram bins
(0%-20%, . . . , 80%-100%) in two series showing the reduction ratio of the species
(red) and the reactions (blue). It is possible to observe cases with models showing
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Fig. 6: Reduction ratios for the species and reactions for each species equivalence.

no reductions in the number of reactions. This can be due to an equivalence
among species with no dynamical role in the network, as they can be interpreted
as distinct auxiliary species that are used to model zero-order reactions, such
as I in reaction I → I + A, a purely catalytic species C in a reaction like
A+C → B +C, or SINK in a degradation reaction such as A→ SINK . In the
first two cases, these species are associated with zero-derivative variable, while in
the last case the variable for SINK does not appear in any ODE in the system.

4 Case Studies

We hereby report selected case studies to highlight the physical interpretability
of the reductions (cf. Q3 in Section 1).
BE example: MAPK double phosphorylation. Multisite phosphorylation
is a well-studied model in computational systems biology [29,47]. The double
(de)phospho-rylation model depicted in Fig. 7 reflects the changes in the phos-
phorylated state of MAPK in BIOMOD0000000030. MAPK cascades are evolu-
tionary conserved and consist of several (usually 3) levels, where the activated

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000030
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M Mpp

M:MAPK:Y

M:MAPK:T

Mpp:MKP:Y

Mpp:MKP:T

...

(a)

M MppM:MAPK:T Mpp:MKP:T...M MppM:MAPK:T Mpp:MKP:T...

(b)

Fig. 7: (a) Mechanisms for the initial interaction of M and Mpp with MAPKK
and MKP from [39]. Phosphorylation of M starts with the binding of MAPKK in
either of terminus (T or Y) or M. Dephosphorylation occurs when MKP binds to
an active molecule of M, in this case Mpp. (b) Reduced mechanism. BE equates
the molecular complexes up to their their phosphorylated residue.

SPB

T

T

T

(a)

SPB

T

T

(b)

Fig. 8: (a) Adaptation of the SPOC dynamical model from [15]. The SPB com-
partment is depicted in the yellow-circle background. Reactions crossing the
compartment boundary represent the intrinsic Tem1 (blue rectangle) GTPase-
cycle and reversible SPB association in terminal T . (b) Reduced mechanism
where both FE and SMB equate all Tem1 molecules up to their GTP (green)-
or GDP (red)-bound state (indicated by the green/red ellipsis).

kinase at each level phosphorylates the kinase at the next level down the cascade.
MAPK (M) is a molecule with two residues: tyrosine (Y) and threonine (T), thus
requires double phosphorylation from a MAPK Kinase to become active (Mpp),
and double dephosphorylation from a MAPK phosphathase to return to its orig-
inal inactive state. This dynamics is represented in a model with 18 species and
32 reactions. BE equates the MAPK complexes regardless of their binding with
MAPK or MKP, yielding a reduced CRN with 16 species and 28 reactions.

FE example: SPOC. Model BIOMOD0000000705 is a CRN of the Spindle
Position Checkpoint (SPOC) [15]. SPOC intervenes in the process of cell divi-
sion by verifying all requirements to pass to the next phase in the cell cycle.
In particular, it prevents the separation of the duplicated chromosomes until
each chromosome is properly attached to the spindle apparatus. The most up-
stream event of the pathway involves GTPase Tem1. Tem1 binds to the yeast
centrosomes (called spindle pole bodies, SPBs) via GAP-dependent and GAP-
independent sites (Fig. 8a). The intrinsic GTPase switching cycle of Tem1 is
modeled as a reversible first-order reaction that converts Tem GTP

1 into Tem GDP
1

and vice versa. The model consists of 24 species and 71 reactions. FE equates
the two forms of the GPTase Tem1 (Fig. 8), moreover this equivalence extends

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000705


A large-scale assessment of exact model reduction in BioModels 13

P3

P2

mSOS

Ras*

mSOS*

Raf*

MEK*

ERK*

Ras

Raf

MEK

ERK

C3G*

Rap1*

P1

C3G

Rap1

P90*

P90

AKT

PI3KPI3K*

AKT*

EGFR NGFR

EGFR NGFR

EGF

EGF

NGF

NGF

BRaf* BRaf

(a)

P

mSOS

Ras*

mSOS*

Raf*

MEK*

ERK*

Ras

Raf

MEK

ERK

C3G*

Rap1*

P

C3G

Rap1

P90*

P90

AKT

PI3KPI3K*

AKT*

EGFR NGFREGF NGF

BRaf* BRaf

EGF

EGF

NGF

NGF

P

(b)

EGFR

NGFR

EGFR

NGFR

EGF

EGF

NGF

NGF

(c)

Fig. 9: (a) Adaptation of the signaling network in [4]. The activation of the
molecular SOS by either of the receptors triggers the Ras cascade, concluding in
ERK activation. EGF can also use the left branch involving PI3K to modulate
Erk activity through Raf1 downregulation, and NGF can upregulate Mek using
the right branch containing Rap1. P1,P2 and P3 represent unregulated phos-
phatases. Molecular components in (a) with the same color are grouped together
in the same FDE equivalence class. (b) BDE reduction. (c) FDE reduction.

to all Tem1 molecular complexes, yielding a reduced model with 16 species and
36 reactions . In this example, the largest SMB yields the same reduction.

BDE/FDE example: Signaling cascade. Model BIOMOD0000000033 is a
signaling pathway concluding in ERK activation [4]. Its most upstream event
(Fig. 9) starts with the binding of EGF and NGF to their respective receptors
(EGFR, NGFR). Once bound, both receptors can activate molecular SOS and
trigger the Ras cascade. Here, molecular components are modeled representing
the species active and inactive state, i.e mSOS* and mSOS, yielding a model
with 32 species and 26 reactions. For BDE, the free EGF and the free receptor
EGFR are aggregated, simplifying the process of EGF binding to EGFR. Sim-
ilarly, this occurs for NFG and NFGR. Finally, phosphatases P1, P2, and P3,
whose role is purely catalytic, are aggregated (in a macro-species denoted by
P ). The BDE reduction has 27 species and 26 reactions (Fig. 9b). Instead, FDE
collapses the active and inactive form of those species. Moreover, the dynamics
of the active and inactive species sum up to zero if aggregated. As above, the
phosphatases P1,P2, and P3 are aggregated in the same class. This results in
the FDE reduction in Fig. 9c, with 18 species and 4 reactions.

SMB example: Proteins with same synthesis mechanism. As observed,
our methods can help detecting symmetries among molecular components. We
show this in BIOMOD0000000705, a FOXO-dependent synthesis mechanism in-

http://www.ebi.ac.uk/biomodels-main/BIOMD0000000033
http://www.ebi.ac.uk/biomodels-main/BIOMD0000000705
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n:r:S c:r:S
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c:S
nucleus

cytoplasm

FOXO
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(a)

nucleus

cytoplasm

(b)

Fig. 10: (a) Adaptation of the FOXO-dependent IsnR and Sod2 synthesis mech-
anism in [45]. Species labels are x:y:z , where x is the species compartment, y
indicates binding with molecular RNA, and z is the first letter of the name of the
protein, e.g., n:r:I encodes the nuclear RNA-bound IsnR, c:S encodes cytoplasmic
Sod2. RNA-bound molecules are rounded by a dotted circle. SMB equivalences
are represented by a dotted rectangle. (b) SMB/FE reduced mechanism.

volving IsnR and Sod2. Forkhead Box-type O (FOXO) is a family of transcrip-
tion factors responsible for various biological processes including apoptosis, cell
metabolism, differentiation, and drug resistance [34]. The model has 56 species
and 135 reactions describing processes such as FOXO-dependent and basal tran-
scription, export, translation, and degradation of RNA and proteins. The kinetic
parameters for FOXO-dependent protein synthesis (Fig. 10a) for both IsnR and
Sod2 are assumed to be equal. This gives an SMB reduction with 36 species and
110 reactions where IsnR and Sod2 molecules are aggregated in each step of the
protein synthesis mechanism (Fig. 10b). FE leads to the same reduction.

5 Concluding Remarks

The empirical assessment of exact model reduction on the BioModels repository
has provided a number of findings along the main evaluation questions Q1–Q3
introduced in Section 1, which can be summarized as follows.
Q1. Assumptions for applicability of model reductions. In the prepro-
cessing phase (Section 3.3), we found 300 models not supported by ERODE.
Among the reasons for incompatibility it is worth commenting on the models
which included exponential expressions in rate functions. This is not accepted
by FDE/BDE because the underlying theory is not decidable. A workaround
has been sketched in [10,13] and builds on a systematic technique which trans-
forms an initial value problem for an ODE system with derivatives containing
rational and exponential expressions into an equivalent problem with polynomial
derivatives [28], to which BE and FE can be applied. In future work we plan to
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implement such a transformation in order to extend the range of applicability of
species equivalences. Instead, the limitation of SMB to elementary CRNs did not
turn out to be practically impeding for the analysis of the BioModels repository,
since all the CRNs were in this form; it is however theoretically interesting to
extend the theory to non-elementary mass-action kinetics.
Q2. Effectiveness of the reductions. Overall, we found exact model reduc-
tions effective in terms of both the number of cases in which a CRN could be re-
duced by at least one technique (40%) and the overall compression ratio achieved
on average (36% for number of species and 26% for the number of reactions).
Unfortunately, the analysis of FDE on a rather appreciable number of models
(196) was not conclusive due to timeouts, because of the relative complexity of
the SMT checks that are required. This challenges the practical applicability of
FDE to realistic case studies (BDE, on the other hand, timed out only twice in
our tests whereas BE, FE, and SMB are supported by minimization algorithms
that enjoy polynomial time and space complexity), prompting alternative ap-
proaches to computing FDE, for example by parallelizing the computations.
Q3. Physical interpretability. In the selected case studies herein presented,
the exact model reductions have revealed that symmetries in certain signalling
pathways carry over to equivalences at the level of the underlying quantitative
semantics. Given their moderate size, the considered models would be computa-
tionally tractable even without reduction. However, the equivalences can be used
as an aid in developing more complex models where such symmetries are present
in some components. In addition, we remark that exact model reduction can still
be useful when the complexity is due to the many repetitions that are required
(e.g., for sensitivity analysis or for simulation with tight confidence intervals) or
for particularly difficult analyses such as parametric inference [44].

Future work. This empirical study suggests potential benefits in the application
of exact model reduction techniques in biological models from the literature. This
motivates the development of our ERODE translator into a more mature tool to
be further integrated with BioModels/SBML. The availability of ready-to-use
model conversions in a simple CRN format such as ERODE’s might stimulate
similar assessments with other model reduction techniques (e.g., [3,12]).

In this paper we focused on reducing models with parameterizations given as
in the respective original publications. If we wish to draw more general conclu-
sions about the relevance of the reductions and the presence of certain symmetri-
cal patterns in signaling pathways, it becomes important to test their robustness
with respect to the model parameters. Theoretically, this does not seem to be
particularly difficult, at least for CRNs with deterministic semantics. For ex-
ample, model parameters could be interpreted as further variables in the SMT
formulas used for checking FDE and BDE. Such an extension is currently not
implemented in ERODE and is subject to the aforementioned caveats about the
scalability of SMT-based reduction techniques, hence left for future work.

Acknowledgement. The authors are grateful to Andreas Dräguer (Institut für
Informatik Zentrum für Bioinformatik Tübingen) for his support with JSBML.
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